

SEG | Servicestelle | Erneuerbare Gase

SEG | Servicestelle Erneuerbare Gase

Aktuelle Arbeitsschwerpunkte

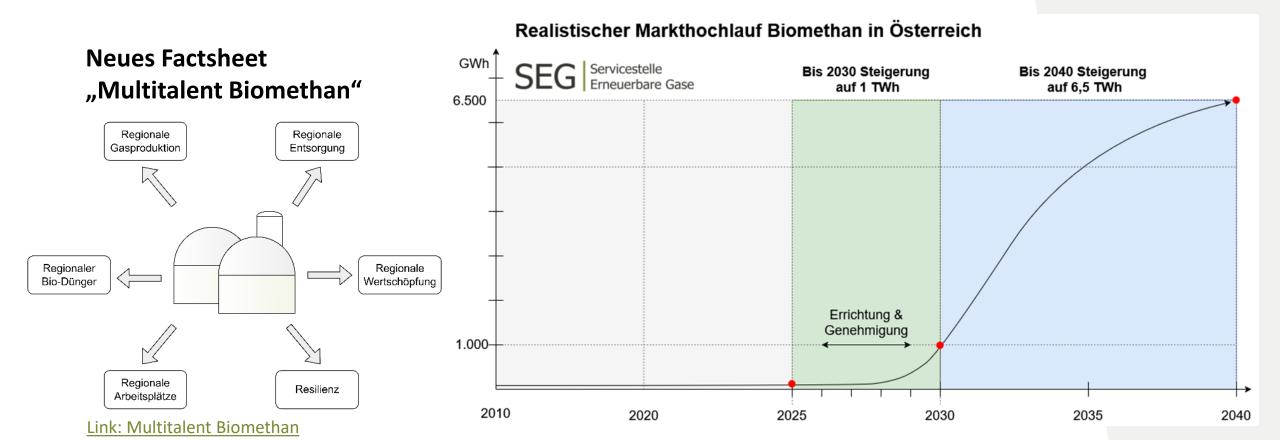
22.10.2025

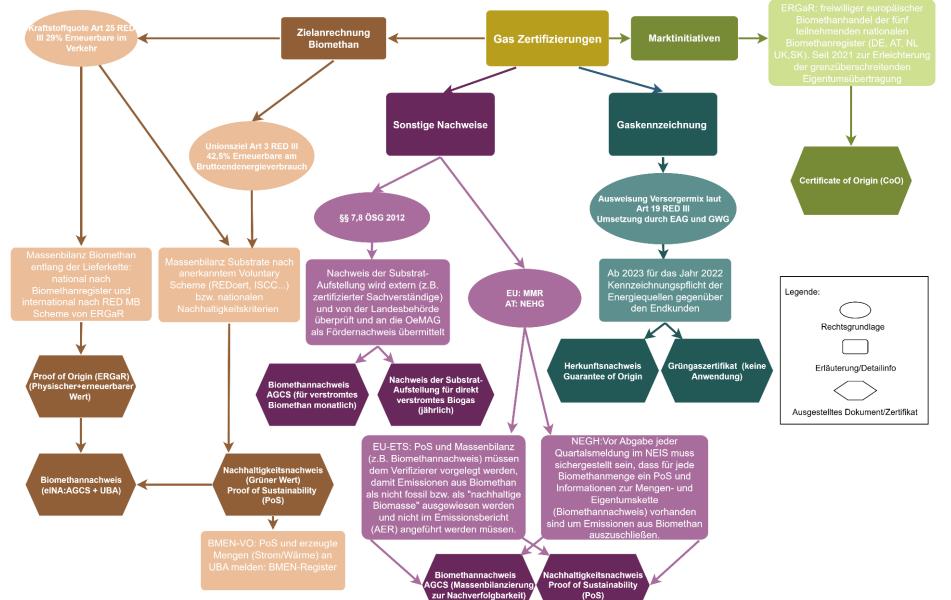
DI Lorenz Strimitzer

Servicestelle Erneuerbare Gase (SEG)

- ► Unabhängige und neutrale Informations- und Beratungseinrichtung (Projekt innerhalb der AEA)
- ► Im Auftrag des **BMWET** (Aufgaben gemäß §56 EAG)
- Unterstützung
 - ▶ zum Ausbau der Produktionskapazitäten bei erneuerbaren Gasen und
 - zur Zielerreichung des Erneuerbaren-Ausbau-Gesetz (EAG) und kommender Rechtsmaterien

Die SEG ist DIE Beratungsstelle für alle Fragen zu erneuerbaren Gasen: kompetent - unabhängig - neutral - kostenlos



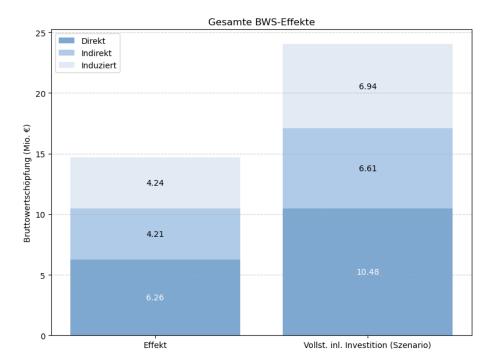

Aktuelle Arbeitsschwerpunkte Biomethan

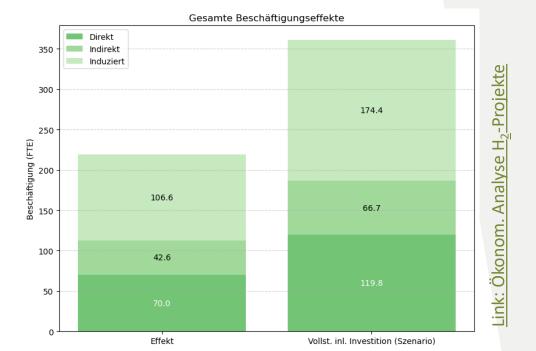
Beratung – Marktbeobachtung - Kommunikation

Bundesministerium Wirtschaft, Energie und Tourismus

Aktuelle Arbeitsschwerpunkte Biomethan/Wasserstoff

Zertifizierung:	Proof of Origin PoO	Proof of Sustainability PoS (Nachhaltigkeits- nachweis)	Proof of Sustainability PoS für EU-ETS und NEHG	Biomethan- nachweis für EU- ETS und NEHG	Biomethan- nachweis für Kraftstoffquote	Herkunfts- nachweis (Guarantee of Origin)	Grüngas- zertifikat	Certificate of Origin CoO
Anwendung	Zielanrech nung Kraftstoff- quote	Zielanrechnung Kraftstoffquote + Erneuerbare Unionsziel 42,5%	Ausschluss der Biomethan- emissionen in Emissions- berichten	Nachweis für Massenbilanz zur Anerkennung von Emissionen aus Biomethan	Zielanrechnung Kraftstoff-quote national	Kennzeichn ung E- quellen für Endkunden	Nachweis für nicht eingespeistes erneuerbares Gas	Freiwilliger europ. Biomethan- handel
Gesetzlicher Rahmen	RED III Art 25-31	RED III Art 3+25-31	Art. 38 MMR NEHG 2022	RED III Art 25-31	RED III Art 25- 31	RED III Art. 19	EAG §86	-
Ausführende Stelle	Int: ERGaR Nat: AGCS	Gutachter, Zertifizierungs- stellen nach (VS)	Gutachter, Zertifizierungs- stellen nach (VS)	AGCS verwaltet Nachweis Gutachter prüft	UBA+AGCS (eINA)	E-Control	E-Control	ERGaR + nat. Biomethan register
Standards/ Schemes	Int: RED MB Scheme	Anerkanntes Voluntary Scheme (VS): REDcert, ISCC, NTA8080	Anerkanntes Voluntary Scheme (VS): REDcert, ISCC, NTA8080	VS+Massen- bilanzierung (AGCS)	VS+Massen- bilanzierung (AGCS)	CEN-EN 16325	-	ERGaR CoO Scheme
Anmerkungen	Untrennbar	für Kraftstoffquote	EDM-Portal für EU-ETS NEIS für NEHG	Nullanrechnung von Biomethan- emissionen in Kombination mit PoS	Nat: Komb. Aus PoO und PoS. elNA DB	Umsetzung EAG§81-84 GWG§129	Keine Anwendung	Schema kompatibel mit HKN- Standard





Aktuelle Arbeitsschwerpunkte Wasserstoff

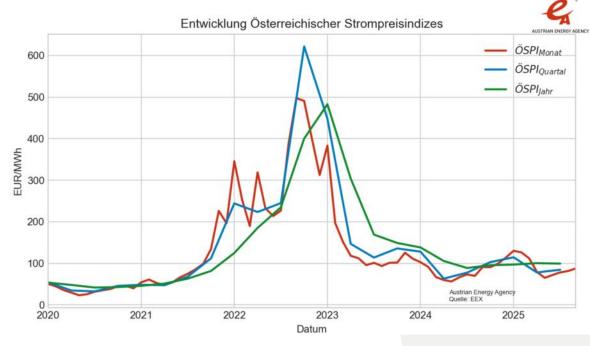
Beratung – Marktbeobachtung - Kommunikation

- ▶ Ökonomische Analyse von H₂-Projekten | Wertschöpfungs- & Beschäftigungseffekte
- ► Standortspezifische Gestehungskosten | Analyse Investitionseffekte und Standortwahl

Bundesministerium Wirtschaft, Energie und Tourismus

Marktbeobachtung, internationaler Austausch, Beratung

- ► Laufende **Datenerhebungen** (CAPEX, OPEX)
- Berechnung aktueller Gestehungskosten von Biomethan & Wasserstoff
- ► Analysen zu H₂-Auktionen, Marktprämien
- ► Erstellung des III. **SEG-Marktberichts**
 - ▶ Technologien, Preise, Märkte
 - ▶ Rahmenbedingungen, Anreize & Hemmnisse
- ► Internationaler Erfahrungsaustausch
- ► Fachexkursionen und Webinare
- Beratung von Marktteilnehmern



Bundesministerium Wirtschaft, Energie und Tourismus

Entwicklung von H₂-Indizes

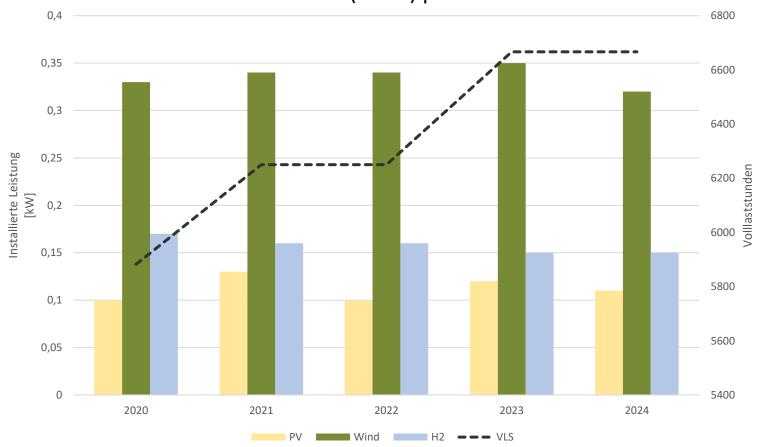
- ► Indizes wichtig für Preisvergleiche und als Orientierungspunkt (gerade in jungen Märkten)
- ► Neuer H₂-Index wird im Rahmen der SEG entwickelt und wird ab November (mindestens) auf SEG-Website veröffentlicht
- ► Ziele H₂-Index:
 - ▶ Inhaltlich neue, aussagekräftige Wasserstoffindizes für relevante Anwendungsfälle
 - ▶ Ohne Dopplung mit bestehenden Indizes

Beispiel ÖSPI der Energieagentur:

https://www.energyagency.at/fakten/strompreisindizes

Berechnung von Levelized Costs of Hydrogen (LCOH) für vier Anwendungsfälle

Tai viei / tiiveilaaligsialie									
	1	2	3	4					
Kurz- beschreibung	Kosten Elektrolyseur und Hybridpark Wind/PV/ Batteriespeicher	Kosten Elektrolyseur mit fixen Volllaststunden über 15 Jahre	Kosten Elektrolyseur mit optimierten Volllaststunden über 15 Jahre	Betriebskosten Elektrolyseur bei optimiertem Einsatz am Folgetag					
Kosten		CAPEX + OPEX	OPEX						
Strombezug	Inselnetz	Inselnetz Stromnetzgebundenes System							
Erneuerbarer Wasserstoff?	EE-Wasserstoff nach RED II/Delegated Act	Erneuerbarer Wasserstof	sobald EE-Anteil im Netz						
Methodisches Vorgehen	Optimierung Hybridpark PV/Wind/Batterie	Bildung einer HPFC a Spotmark	Optimierung anhand Day-Ahead-Preisen						
Häufigkeit neuer Werte	Jahresupdates	Monatsupdates		Tagesupdates					



Inselsystem (1) – erste Ergebnisse...

Optimale Inselsystem (kein Stromnetzzugang) zur Produktion einer MWh Wasserstoff zu minimalen Kosten (LCOH) pro Jahr

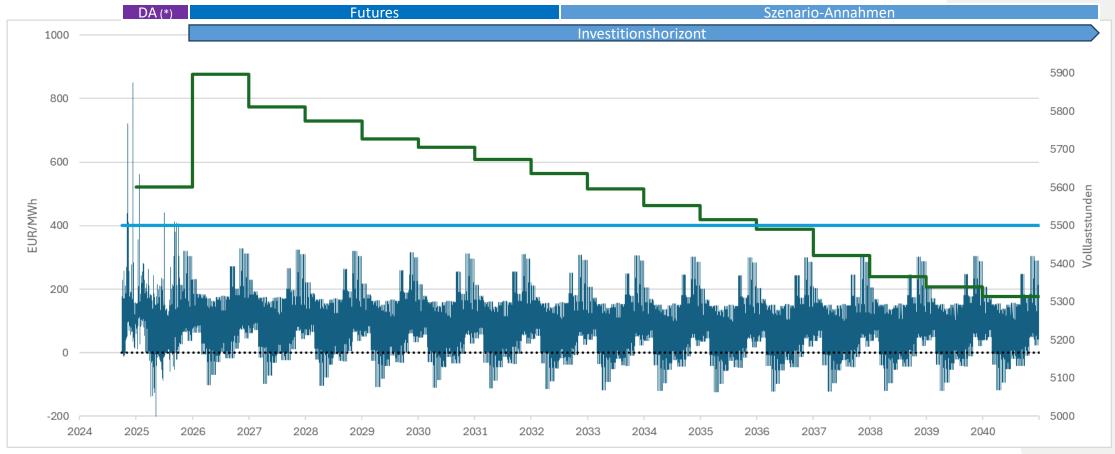
Aktuelle Investitionskosten:

optimales
Verhältnis von **2:6:3**(PV, Wind, Elektrolyseur)

Keine Batterie (!)

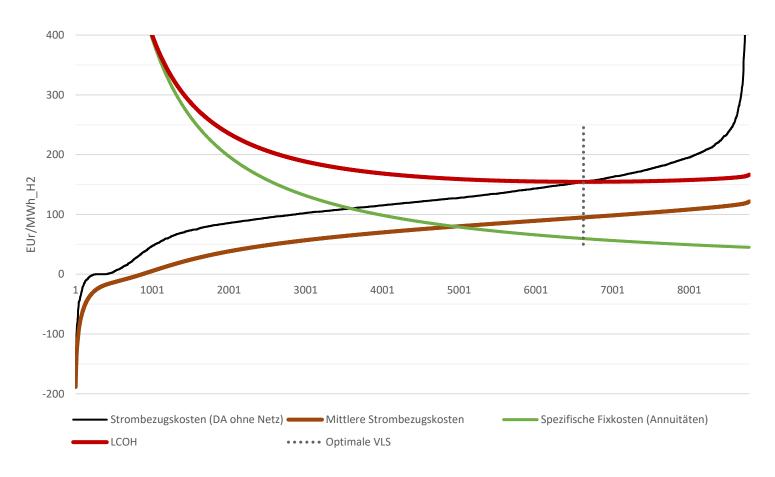
Investitionskostenszenarien:Batterie wird gebaut

Herausforderung:
Wie bildet man diese
Instabilität im optimalen
System korrekt in einem Index
ab?



Marktgebunden (2 & 3) – Hourly Power Forward Curve als Grundlage

Hourly-Price-Forward-Curve (HPFC) – Österreich 2024-2040



Ermittlung optimaler Volllaststunden

Gleichgewicht optimaler VLS ergibt sich aus mittleren Strombezugskosten und spezifischen Fixkosten

- Mittlerer Strombezugskosten steigen mit VLS
- Spezifische Fixkosten fallen mit VLS
- Strompreise, Investmentkosten,
 Zinsen und Wirkungsgrad wirken
 auf Optimum

Servicestelle Erneuerbare Gase (SEG)

► Service-Line +43 1 285 02 34

(Mo.-Do. 9-16 Uhr | Fr. 9-13 Uhr)

► E-Mail <u>service@erneuerbaresgas.at</u>

Website www.erneuerbaresgas.at

https://www.ern euerbaresgas.at/

SEG | Servicestelle | Erneuerbare Gase

Danke für die Aufmerksamkeit!

DI Lorenz Strimitzer

Leitung Servicestelle Erneuerbare Gase

lorenz.strimitzer@energygency.at

0664 810 78 65

